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ABSTRACT 

The development of residual stresses in a hybrid α-SiC-lining/CrMoV-steel 

jacket gun barrel during shrink fitting of the jacket over the lining is studied using a 

probabilistic finite element analysis.  A particular attention is given to understanding 

the development of the axial compressive stress in the ceramic lining since this stress (if 

sufficiently high) can prevent lining failure caused by formation and growth of 

circumferential cracks near the barrel ends.  To quantify the effect of variability in 

various design, materials, and processing parameters on the magnitude and the 

distribution of the axial residual stress, a probabilistic structural analysis approach, 

known as the Advanced Mean Value (AMV) method, is used which enables 

determination of the cumulative distribution function for failure of the lining.  The 

results obtained are validated using the Adaptive Importance Sampling method, an 

efficient direct statistical sampling technique.  Lastly, the corresponding sensitivity 

factors which quantify the effect of variability in each parameter on the magnitude of 

axial residual stresses in the ceramic lining are computed.   The results indicate that the 

loss of the compressive axial stress in the lining near the barrel ends is to a greatest 

extent affected by the magnitude of the friction coefficient at the lining/barrel interface.   
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I. INTRODUCTION 
It is generally accepted that future war fighting and peacekeeping operations of 

the US Armed Forces will entail rapid deployment of light air-mobile vehicles with 

large caliber guns capable of providing increased range, accuracy, and energy on 

target.  According to Katz [4], conventional CrMoV-based gun steels are at their limit 

with respect to the ability to withstand thermal cracking and/or melting-erosion 

induced during long-burst firing of the large diameter guns.  Thus, to achieve the 

aforementioned range, accuracy and impact-energy objectives, new generations of 

advanced guns that can fire ammunition using advanced high-energy propellants, will 

have to be developed.  This will require the use of new materials and design strategies, 

which can provide increased high-temperature operational capabilities and improved 

erosion resistance [1]. 

One of the approaches to enhancing the performance of large-caliber guns is the 

use of hybrid gun barrels consisting of a ceramic lining and a steel jacket.  Due to their 

high melting temperature (controls melting-erosion resistance), high hot-hardness 

(controls wear and erosion resistance), and chemical inertness (controls corrosion-

erosion resistance), ceramics appear as quite attractive materials for gun-barrel liner 

applications.  However, ceramics suffer from a lack of fracture toughness and tensile 

strength, which may hinder their use in advanced gun barrels [2,3]. 

A review of the literature [1] reveals that three types of ceramic linings: α-SiC, 

Si3N4 and SiAlON (a Si3N4 + Al2O3 solid solution) are capable of surviving only 1000 

rounds in the single-shot firing mode and only 100 rounds in the burst-firing mode of 

conventional ammunition with a standard M2 propellant in .50 caliber machine guns.  

The primary failure mode in these barrels is formation and growth of circumferential 

cracks near the ends of the ceramic insert.  Since the ceramic lining is initially placed in 

a triaxial compressive stress state by shrink fitting the steel jacket over it, the observed 

failure mode is believed to be the result of a reduction (or a complete loss) of axial 

compression in the lining due to slippage at the lining/barrel interface near the barrel 

ends.  
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Only α-SiC liners have so far been tested in single-shot and burst-firing modes 

using specially designed ammunition and a JA-2 high-energy propellant (flame 

temperature ~ 3450K) in a 25 mm bore gun barrel.  This propellant gives rise to a ~ 

17% increase in the projectile velocity at the muzzle-end of the barrel relative to that 

attained using the standard M2 propellant.  These α-SiC linings also suffered from 

formation of multiple circumferential cracks near the breach and the muzzle ends of 

the barrel with the first crack being observed after the initial 20-round burst.  An 

important observation was made that while each end of the linings was converted to a 

stack of washers, the cracks were “tight” (no evidence of gas leakage to the steel jacket 

was found) and they did not apparently degrade the gun performance significantly.  In 

fact, testing was terminated due to excessive erosion of a CrMoV steel gun-barrel 

extender and not due to lining degradation.  These observations suggest that the loss of 

axial compression in the ceramic lining caused by slippage at the lining/jacket interface 

near the barrel ends during the shrink-fit process, is a very critical step in the 

circumferential-cracks formation process.  During long-burst firing the temperature of 

the steel jacket increases substantially.  As the jacket expands, it pulls on the adjoining 

ceramic lining.  Unless the compressive residual stress in the lining is sufficiently high, 

this can give rise to a high tensile stress and cracking in the lining near the barrel ends.  

When firing stops, the steel jacket begins to cool and restores the compressive residual 

stresses in the lining ensuring structural integrity of the barrel [4]. 

The objective of the present work is to carry out a probabilistic finite element 

analysis of the development of residual stresses in a 25mm-bore hybrid α-SiC 

lining/CrMoV-steel jacket gun barrel during a shrink-fit process.  Analyses of residual 

stresses by a finite element method are generally done using a deterministic scheme in 

which nominal values are used for geometrical, material, and process parameters.  

Since these parameters are not generally known with an absolute certainty, a 

probabilistic finite element approach is used in the present work to assess statistical 

variability of the residual stresses and their sensitivity to variation in different design, 

material, and process parameters.  A performance analysis of hybrid gun barrels 

during single-shot and burst-firing events has been presented in our recent paper [5]. 
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The organization of the paper is as follows.  A brief overview of the probabilistic 

structural analysis methods used is presented in Section II.1.  A detailed description of 

the finite element procedure used to analyze the development of residual stresses during 

the shrink-fit process is given in Section II.2.  Main results obtained in the present 

study are presented and discussed in Section III.  Key conclusions resulting from the 

present work are summarized in Section IV. 

II. COMPUTATIONAL PROCEDURES 

II.1. Probabilistic Structural Analysis 

The structural reliability analysis is based on the concept of a limit-state or 

failure function [6-10]. The limit-state function g(X) is a function of a vector of basic 

random (design) variables, X=(X1,X2,…,Xn), with g(X)=0 defining the limit-state surface. 

The limit-state surface separates the design space into two regions: a failure region in 

which g(X)≤0 and a safe region in which g(X)>0.  The limit-state function is generally 

defined as: 

0)()( 0 =−= zXZXg                (1) 

where Z(X) is a response or a performance function of the system being analyzed and z0 

is a critical value of the response (performance) function. 

For the given joint probability density function of the design variables, , 

the probability of failure is defined as: 

)(Xf x

 
∫∫ ′′=

Ω
XdXfP xf )(...                    (2) 

 
where Ω denotes the failure domain.  Computation of the failure probability by direct 

evaluation of the multi-dimensional integral in Equ. (2) can be difficult for complicated 

failure functions but can be straightforward using a standard Monte Carlo procedure. 

 The Monte Carlo simulation method involves random sampling of each design 

variable according to its distribution followed by evaluation of the system performance 

function.  For correlated variables, the sampling has to be adjusted to take into account 

the correlations.  Design variables sampling and subsequent performance function 
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evaluations are repeated until sufficiently large number of Z(X) values is obtained from 

which the statistics of the response can be determined.  The main strength of the Monte 

Carlo method is that it is exact in the limit of a very large number of samples.  

However, the method has a serious disadvantage in that a very large number of 

function evaluations may be necessary, particularly when very rare events need to be 

captured.  A typical rule of thumb specifies the minimum number of function 

evaluations needed for low failure probabilities Pf as greater or equal to fP10 .  

Conversely, for the failure probability nearing one, the number of simulations needed is 

no less than ( )fP−110 .    

In most structural applications, the acceptable probability of failure is quite 

small.  Therefore, the number of necessary function evaluations becomes very high, of 

the order of tens or hundreds of thousands.  When the computation of the performance 

function is time consuming (e.g. it entails extensive finite element computations), the use 

of the Monte Carlo method becomes prohibitively expensive.  Under such 

circumstances, advanced-approximate probabilistic methods that can compute the 

probabilistic response with far fewer number of function evaluations have to be 

utilized.  In the present work, the Advanced Mean Value method developed by 

Millwater and co-workers is used [6-10]. 

II.1.1 Advanced Mean-Value Method 

 The Advanced Mean Value (AMV) method provides a bridge between a crude 

Mean Value (MV) based analysis and an accurate Monte Carlo method-based analysis 

of the cumulative probability distribution function [11].  It is, in general, a substantially 

more accurate method than the MV method with a minor increase in the number of 

calculations required. 

 Within the MV method, a performance function, Z(X), of the system being 

analyzed is approximated using the following truncated Taylor series: 

( ) ( )∑
= =

+=−⋅







∂
∂

+=
n

i

n

i
iiii

i
xMV XaaX

X
ZZZ

1 1
0µµ ∑            (3) 
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where the derivatives (  are evaluated at the mean values µ)/ iXZ ∂∂ i of the design 

variables Xi (i=1,…,n), and µx is used to denote a vector containing the mean values of 

the design variables.  These derivatives are readily calculated by numerical 

differentiation.  Within the advanced mean-value model, the MV-based performance 

function is corrected as: 

( MVMVAMV ZHZZ += )                (4) 

where H(ZMV) is defined as a (negative) difference between the approximate 

performance-function values ZMV (obtained using Equation (3)) and the accurate 

performance-function values (calculated using the function Z(X) defined in Equation 

(1)), along the locus of the most probable points (MPPs) at different levels, z0, of the 

system response.  The most probable point at a given response level is defined as the 

point with the maximum joint probability density of the design variables.  

Determination of the most probable point is generally done in a space defined by 

independent standard-normal random variables.  If the random variables Xi are 

mutually dependant they have to be first transformed into a set of independent 

variables as discussed in Ref. [12].  In the present work, all the random design variables 

Xi selected are mutually independent.  Each of the variables, which is not a standard 

normal variable should be transformed into the standard normal values, ui using the 

following transformation: 

( ) ( ) ( )[ ] ),..,1(        1 niXFuorXFu ixiixi =Φ==Φ −     (5) 

where  is the cumulative probability distribution function for the standard normal 

distribution. The system performance function Z(X) is then converted into the 

corresponding Z(u) function.  The most probable point in the u-space at any level of 

system response Z(u) = z

Φ

0 is the point on the g(u) = Z(u) –z0 limit-state surface located at 

the minimum distance (denoted as β) from the space origin (u=0).  To help clarify the 

most probable point concept, a case involving two random variables is shown 

schematically in Figure 1. 

The locus of the most probable points for different levels of the system 

performance z0 can be determined by solving the following optimization problem: 
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minimize the magnitude of the vector u, |u|, subject to the constraint that Z(u) = z0 

which can be accomplished by various optimization algorithms [e.g. 13].  Within the 

AMV method, this optimization procedure is carried out in such a way that the 

approximate mean value function ZMV, Equation (3), is used as the constraining 

equation ZMV(u) = z0.  Since this does not involve costly (e.g. finite element base) 

evaluations of the system performance, determination procedure for the MPP is highly 

efficient.  Once the most probable point in the u-space, u*, is found, the corresponding 

most probable point in the X-space, X*, is obtained by inverting the transformation 

given in Equation (5). 

The accuracy of the AMV solution obtained depends on the correctness of the 

mean-value based locus of the most probable points.  To further improve the advanced 

mean-value solution at a given level of the system response z0, the so-called AMV+ 

method is used.  Within this method, the response function is approximated around the 

most probable point, X*, using the following truncated Taylor series: 

 ( ) ( ) ∑∑
==

+=−







∂
∂

+=
n

i
ii

n

i
ii

xi
MPP XbbxX

X
ZXZZ

1
0

1

*

*

*                  (6) 

Equation (6) is next used as a constraining equation in the optimization 

procedure discussed above to update the most probable point corresponding to a given 

level of system response.  Lastly, the accurate (e.g. finite element base) response 

function is used to evaluate the system response at the updated value of the most 

probable point.   

To summarize, the AMV and AMV+ methods involve the following steps: 

 (1) The MV response function approximation is first constructed using Equ. (3) 

and used in conjunction with a sampling scheme to evaluate the “mean-value based” 

cumulative distribution function of the system response.  As shown in Table 1, this step 

entails n evaluations of the accurate system response function, where n is the number of 

random variables. 

 (2) For a given level of the cumulative distribution function, the constrained 

optimization procedure is used to determine the most probable point X* and, in turn, 
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accurately evaluate the corresponding system response Z(X*).  As shown in Table 1, this 

step requires only one additional evaluation of the accurate response function. 

(3) To further improve the AMV solution at a given level of the cumulative 

distribution function, design variables are perturbed around X* and Equ. (6) used to 

construct ZMPP.  After the cumulative distribution function is determined via the 

sampling scheme discussed above, Equ. (6) is used as the constraining equation in the 

optimization procedure to update the most probable point (X**) and the system 

response is reevaluated one more time as ZAMV+ = Z(X**).  As shown in Table 1, this step 

requires n+1 accurate performance function evaluations.   

(4) Step 3 is repeated until convergence of the system performance is reached for 

a given level of the cumulative distribution function.  

When the limit state surface can not be well represented using the truncated 

Taylor series or other low order polynomials, the AMV+ based solution for the failure 

probability may be inaccurate. In such cases, an efficient direct-sampling scheme is 

needed to verify the AMV+ based solution.  One such scheme, the Adaptive Importance 

Sampling method, appears to be particularly efficient and is employed in the present 

work [6,10]. 

II.1.2 Adaptive Importance Sampling Method 

The Adaptive Importance Sampling (AIS) method has two salient features: (a) 

design-variables sampling within the safe region is minimized and instead it is 

concentrated in the portion of the failure region in which the failure probability is 

highest and; (b) the sampling region is continuously increased in the course of sampling 

by properly deforming the boundary of the sampling region until the sampling region 

completely covers the failure region, at which point the probability of failure converges 

[6,10].  

 The first step in this sampling procedure involves introduction of an 

approximate sampling (limit-state) function gs(u) in the (standard-normal) u-space 

which is typically defined as a full second-order Taylor expansion around the most 

probable point (u*) as:  
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( ) ( ) ( ) ( ) ( )( *****

2
1 uuuDuuuuugug TT

ss −−+−∇= )    (8) 

where   is the gradient vector, and D a symmetric matrix of the 

partial second-order derivatives:  

,0*)( =ug s *)(ug s∇

( ) ( )
ji

s
ij uu

ug
uD

∂∂
∂

=
*2

*           (9) 

The gradient vector and the matrix D are computed using a finite difference method 

and either the AMV+ based or the exact (finite element based) performance function 

evaluations.  To simplify the computation of the failure probability for the (original) 

limit-state function, Equ. (8), the following orthogonal transformation [12,14-15] is first 

employed:   

vHu T−=            (10) 

where the n-th row of the matrix H contains the sensitivity factors, 

( ) βα /||/|)( ***
i * isui

s uugu
g −=∇∂
∂=

0* =iv

, evaluated at u*.  This orthogonal 

transformation thus aligns the vn variable with the vector connecting the space origin 

with the MPP.  The components of the MPP in the v-space are therefore  

(i=1,..,n-1), β=*
nv  and Equ. (8) can then be rewritten as: 

( ) ( ) vHDHv
ug

vvg TT

s
ns *2

1
∇

+−= β        (11) 

where ( )**  uu T=β  is the distance of the most probable point from the v-space (or u-

space) origin and the vector v is defined in Equ. (8) as: 

( )β−= nvvvv ,..,, 21          (12) 

Equ. (11) represents a general second-order n-dimensional surface and can be 

further simplified if, in the second term on the right-hand side of this equation, only the  
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second-order terms for νi (i=1,2,..,n-1) are retained, resulting in the following 

hyperbolic function [23]: 

( ) Avvvvg T
ns +−= β          (13) 

where now v=(v1,v2,…vn-1) and 

( )
( ) 1,..,1,         ,

2 *
−=

∇
= nji

ug
HDH

A
s

ij
T

ij        (14) 

Next, a second orthogonal transformation is used to diagonalize matrix A as: 

wHv 1=            (15) 

where matrix H1 contains eigenvectors of matrix A as column vectors.  This 

transformation converts Equ. (13) into: 

( ) ∑
−

=
+−=

1

1

2

2
1,

n

i
iins wkvwvg β         (16) 

where ki=2λi represents the i-th principal curvature and λi is the corresponding 

eigenvalue of matrix A.  To further simplify the failure function, the individual 

curvatures appearing in Equ. (16) are replaced with a single (asymptotic second-order 

reliability method-based [15]) curvature defined as: 

( )[ ] 2
1

1

1

21 1 11 −
−

=
−+= ∏

n
n

i
iM kk β

β
.        (17) 

This allows for Equ. (16) to be rewritten as: 

( ) ( ) ∑
−

=
+−=

1

1

2

2
1,

n

i
iMns wkvwvg β         (18) 

Equ. (18) defines a parabolic form of the limit-state function in a coordinate 

system defined by vn (colinear with a line connecting the space origin with the MPP in 

Figure 2) and n-1 wi‘s (tangent to the limit state surface at the MPP).  Examination of 

Equ. (18) reveals that since vn and wi (i=1,..,n-1) are uncorrelated standard normal 
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variables, the second term in this equation has a Chi-square distribution with n-1 

degrees of freedom while the first term has a standard normal distribution. 

 If a new random variable  is introduced to handle the second term in 

Equ. (18), the probability density function for the failure function g

2
1

1

2
i

n

i
ws

−

=
Σ=

s can be defined as: 

222

0
)()

2
1()( 2 dssfskgfgf

insMsvsg
−

+−∫=
∞

β       (19) 

where fv() and refer respectively to the standard normal and the (n-1 degree of 

freedom) Chi-square probability density functions.  The failure probability (the 

probability that ) based on the probability density function defined by Equ. (19) 

can then be expressed as: 

()2
ins

f
−

≤sg 0

222

0

0

)()
2
1()( 2

1
dssfskdggfP

nsMssgf
−

⋅+Φ∫=∫=
∞

∞−
β      (20) 

 The probability density function for random variable sampling within the failure 

region bounded by Equ. (18) is then defined as: 

( )
( )

f

sM

s P

sfsk
sf

n

22

2
2

1

2

2
1

−
⋅





 +Φ

=
β

       (21) 

This function can be constructed numerically for the given β, kM and n and the s2 

variable sampled by first generating a random number r distributed uniformly in the 

range (0,1) and then using the method of inversion of the cumulative distribution 

function to compute s2 as [16]: 

)(12
2 xFs s
−=            (22) 

where  is the cumulative distribution function corresponding to the probability 

density function given by Equ. (21).  Once s

()2s
F

2 is selected, a random angle in a range from 

0 to 180 degrees is chosen and used to define the directional cosine of one of wi‘s 
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(i=1,..,n-1) and the remaining wi‘s are calculated so that the condition is 

satisfied.  The random variable v

2
1

1

2
i

n

i
ws

−

=
Σ=

n is next selected from the standard normal 

distribution so that v  which guarantees that the sampled point is 

within the failure region.  The sampled design point with the coordinates w

2
1

1 i

n

iMn wk
−

=
Σ+≥ β

i (i=1,..,n-1), 

vn is next transformed to its corresponding u-space point using H1 and H matrices, and 

then transformed to its X-space point.  The exact limit-state function g(X) is next 

computed in order to determine its sign i.e. whether the sampled point is in the failure 

or the safe region.   

II.2 Finite Element Analysis 

II.2.1  Description of the Problem 

A schematic of a gun-barrel assembly used for testing α-SiC barrel liners under 

single-shot and burst firing condition is shown in Figure 3.  The barrel is 355.6mm long, 

has a 25.0mm bore and the α-SiC lining is 3.175mm thick.  The wall thickness of the 

steel jacket is approximately 25.4mm.  As shown in Figure 3, the barrel assembly also 

includes a (non-lined) steel barrel extender and a steel shank.  Minor components in the 

barrel assembly such as set screws, compliant washers and a seal are not shown to keep 

the figure simple.  Also a 0.15mm thick lining/jacket compliant interlayer made of 

copper (often employed to reduce point-type contact stresses at the liner/jacket 

interface) is not shown.  Since point-type contact stresses (controlled by roughness of 

the contacting surfaces) are not modeled within the present work, the compliant copper 

layer is not considered.  

As discussed earlier, in order to attain a triaxial compressive stress state in the 

ceramic lining, the steel jacket is typically placed over it using a shrink-fit process.  

Within this process, the jacket is heated to a sufficiently high temperature in order to 

expand its bore and slid over the tubular ceramic lining.  Since the (ambient 

temperature) ceramic-lining outer diameter is larger than the (ambient temperature) 

steel-jacket inner diameter, the lining prevents a complete contraction of the jacket 

during cooling and the resulting hybrid ceramic/steel tube develops residual stresses.  

In particular, since the steel jacket is prevented from fully contracting by the ceramic 
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lining, it acquires a tensile stress state.  Conversely, compressive residual stresses 

develop in the ceramic lining.  Since the ability of ceramics to withstand compressive 

stresses is at least an order of magnitude higher than their tensile strength, it is 

generally desirable to maximize the level of compressive residual stresses in the lining.  

The maximum achievable level of residual stresses in ceramic linings is typically limited 

by at least two factors: (a) high (tensile) contact stresses at the ceramic/steel interface, if 

substantially higher than 500MPa, can lead to crack formation in the ceramic lining 

and; (b) the maximum temperature to which the steel jacket is heated (which controls 

the level of residual stresses) is limited to 1200K by the requirement that no significant 

changes in the steel microstructure take place during the shrink fit process.  In 

addition, as discussed earlier, slippage at the ceramic/steel interface near the tube ends 

gives rise to a reduction of compressive residual stress in the ceramic lining and can 

have a profound effect on the performance of hybrid ceramic/steel gun barrels. 

 The problem of development of the compressive residual stresses during a 

shrink-fit process and, in particular, a loss of the axial compressive residual stress in 

the ceramic lining near the barrel ends and its sensitivity to variability in design, 

materials and process parameters are studied in the present work by carrying out a 

series of combined thermal/stress finite element analyses using the commercial finite 

element package ABAQUS/Standard [17]. 

II.2.2 Formulation of the Problem 

 Development of the residual stresses during the shrink-fit process is modeled in 

two steps: (a) a transient heat transfer analysis and (b) an elastic-plastic mechanical 

stress analysis.  Decoupling the study in the separate thermal and mechanical analyses 

is justified since, due to a low extent of plastic deformation in the tube, the contribution 

of the plastic strain energy dissipated as heat to the energy conservation equation is 

expected to be minimal while the effect of temperature on materials mechanical 

properties can be incorporated directly in the mechanical analysis. 

 A schematic of the model used in the thermal analysis is shown in Figure 4(a).  In 

the initial condition, the steel jacket is set at a temperature of 1173K in order to comply 

with the experimental procedure described in reference [4], while the ceramic liner is 
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held at room temperature (298K).  A heat transfer by conduction is considered to take 

place throughout the solid material while heat exchange between the solid and the 

surrounding is taken to be controlled by convection and radiation. 

 A schematic of the model used in the mechanical analysis is shown in Figure 

4(b). In the initial condition, the ceramic lining and the steel jacket are both stress-free 

and each at its respective initial temperature.  As time progresses, differences in 

temperatures and thermal expansion coefficients give rise to formation of residual 

stresses. 

 Initial calculations in which full-length tubes were used showed that variations in 

the residual stress with distance along the tube axis occur only to about 70mm away 

from the tube ends.  Hence, all the calculations reported in the present work involved 

shortened, 152.4mm-long tubes.  Furthermore, a symmetry conditions is applied in the 

length (z) direction so that only a half of the barrel had to be modeled.  The finite 

element mesh used in both thermal and mechanical analyses is shown in Figure 4(c).  

The computational domain is partitioned into 864 eight-node quadrilateral 

axisymmetric elements (DCAX8 ABAQUS elements for the thermal analysis and CAX8 

ABAQUS elements for the mechanical analysis).  Since high-gradients of the residual 

stresses are localized to a region adjacent to the lining/jacket interface and near the 

tube ends, mesh refinement is employed in these regions. 

 The mean-value and the standard deviation data for the (thermal and 

mechanical) materials properties and the process parameter (steel-jacket temperature) 

used in the present finite element analyses are given in Table 2.  Variability of all 

parameters considered is assumed to be governed by the appropriate normal 

distribution.  The materials properties listed in Table 2 are obtained from the 

commercial materials database Cambridge Engineering Selector [18].  The effect of 

variability of one shrink-fit process parameter, the initial temperature of the steel 

jacket , is also considered. 

III. RESULTS AND DISCUSSION 

Contour plots of the temperature distribution in the hybrid α-SiC/CrMoV-steel 

barrel at three different cooling times (0.01s, 1.0s and 100.0s) are shown in Figures 5(a)-
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5(c), respectively.  These results are obtained using the mean values of all thermal 

material parameters listed in Table 2.  The results shown in Figures 5(a)-5(c) are as 

expected.  That is, since only the steel jacket is initially at a high temperature, once the 

jacket is slid over the lining, the lining begins to heat while the jacket cools both due to 

heat conduction to the lining and due to heat convection/radiation to the surrounding, 

Figure 5(a).  Furthermore, due to a relatively high thermal conductivity of α-SiC and a 

low mass of the lining compared to that of the jacket, the lining quickly heats up and 

reaches temperatures comparable to those in the jacket, Figure 5(b).  During further 

cooling, both the lining and the jacket undergo a temperature decrease.  Due to heat 

exchange with the surrounding through the tube surfaces, the highest temperatures are 

found in the interior of the tube, Figure 5(c).  Furthermore, since the surface area 

through which heat is exchanged with the surrounding is considerably smaller for the 

lining than for the jacket, the highest temperature region shifts toward the ceramic 

lining as cooling proceeds, Figure 5(c).  

 Contour plots of the axial, radial, and circumferential residual stresses in the 

hybrid ceramic/steel gun barrel at the completion of the shrink-fit process (when the 

temperature of the entire hybrid barrel becomes equal to the ambient temperature) are 

shown in Figures 6(a)-6(c), respectively. These results are also obtained using the mean 

values of the materials and the processing parameters.  A simple examination of the 

results shown in Figures 6(a)-6(c) reveals that almost the entire α-SiC lining is subject 

to a triaxial compressive stress state.  A small region at the lining end experiences 

tensile radial stress whose magnitude (<70MPa) is quite small compared to the 

magnitudes of the compressive axial and tangential stresses in the same region. 

 Contour plots displaying evolution of the residual axial stress during the shrink-

fit process are shown in Figures 7(a)-(c).  The cooling times (.01s, 1.0s, and 100.0s) in 

Figures 7(a)-(c), respectively are selected to be identical to those associated with Figures 

5(a)-(c) in order to reveal the relationship between the temperature field and the axial 

stress field.  At the shortest time displayed (0.01s), the temperature changes relative to 

the initial temperatures of the lining and the steel jacket and, hence, the (thermal) 

stresses are primarily located near the lining/jacket interface, Figures 5(a) and 7(a).  As 
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cooling proceeds, the temperature of the ceramic lining becomes more comparable to 

that of the steel jacket, Figures 5(b)-5(c) and, due to a lower coefficient of thermal 

expansion, the ceramic lining begins to develop a compressive axial stress while the 

steel jacket experiences axial tension, Figures 7(b)-(c).  This process continues with 

cooling, giving rise to increasingly higher levels of the axial stress in the region near the 

right (symmetry) end of the barrel.  However, at the same time, slippage at the 

lining/barrel interface near the free end of the tube gives rise to a significant reduction 

in the magnitude of the compressive axial stress, Figures 7(b) and (c). 

 Since the reduction of the axial compressive stress in the ceramic lining near the 

barrel ends due to a slip at the lining/jacket interface has been identified [1] as one of 

the key factors promoting failure of the gun-barrel linings during burst firing by 

formation and growth of circumferential cracks and since such cracks are believed to 

originate at the lining/jacket interface, the distribution of the axial stress σzz in the 

lining along the lining/jacket interface is analyzed, Figure 8.  The results displayed in 

Figure 8 show that indeed the axial residual stress is reduced in the lining near the tube 

end and that the magnitude of this stress decreases continuously (to zero) as the tube 

end is approached. 

 To analyze the effect of variability in materials and process parameters on the 

performance of the α-SiC barrel lining, the performance function is defined, in the 

present case, as the Weibull probability for failure of the lining when it is subject to a 

uniform axial tensile stress equal to the tensile strength  of α–SiC (generally reported as 

450MPa).  Since the dominant mode of failure in ceramic linings is formation and 

growth of circumferential cracks at the lining/jacket interface near the barrel ends, it is 

assumed that lining failure is initiated by surface flaws and that it is governed by the 

axial stress alone.  Hence, the probability for failure (the performance function) is 

defined as [24]: 
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where the vector X contains all the material/process variables listed in Table 2, 

σapp=450MPa, σo (=556MPa [25]) is the scaling factor which is numerically equal to the 

stress level at which Pf=0.632 in a material of a unit volume, σzz(X,z) is the axial stress in 

the row of elements of the ceramic lining adjacent to the steel jacket, m (=6.59 [25]) is 

the Weibull modulus, rl (=15.675mm) is the outer lining radius, lt (=76.3mm) is the 

barrel length and z is a measure of the distance along the barrel length.  Enumeration 

of the components of the vector X is given in Table 3.   

   

To construct the MV-based approximation, ZMV(X), for Z(X) using Equ. (3), each 

random variable Xi is perturbed by 0.1 of its standard deviation and a first-order finite 

difference procedure used to compute the partial derivatives ∂Z/∂Xi|µ..  The values of 

the Taylor series coefficients, ai, appearing in Equ. (3) are listed in Table 3.   The 

corresponding normalized sensitivities of the performance function to small variations 

in the material and process parameters relative to their mean values, defined as 

XX iiii XZuZ µµ σα |/ |/ ∂∂=∂∂= , are also listed in Table 3.   The αi values listed in 

Table 3 indicate that the friction coefficient at the lining/jacket interface has the 

dominant effect on the extent of reduction of compressive axial stress near the barrel 

end and hence on the failure probability of the lining.  Among other parameters, the 

thermal expansion coefficient and the yield strength of the steel and the Young’s 

modulus and the thermal expansion coefficient of α-SiC have largest effects. 

Once ZMV function is determined, 10,000,000 design points are generated by 

randomly sampling each variable Xi using its probability distribution function and, for 

each design point, ZMV is evaluated using Equ. (3).  A frequency map for ZMV is next 

constructed and used to compute the corresponding cumulative distribution function, 

CDF.  The results of this procedure are shown in Figures 9(a) and (b).   A conventional 

linear CDF scale is used along the vertical axis is in Figure 9(a).  On the other hand, a 

normal-distribution CDF scale with a number of standard deviations as unit is used 

along the left vertical axis in Figure 9(b).  The corresponding CDF probability levels 

are denoted along the right vertical axis in Figure 9(b).    
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The results shown in Figure 9(a) indicate that there is a small (<0.0009) 

probability for the lining to be failure-proof (i.e. for its failure probability to be zero).  

Furthermore, the linear nature of the ZMV plot shown in Figure 9(b) indicates that the 

system performance (the failure probability of the lining) has a normal distribution.  

This finding is expected since variability of all the material/process variables Xi is also 

governed by normal distributions.  It is also seen that when the materials and process 

parameters are set to their mean values (CDF=0.5 in Figure 9(a)), the failure 

probability is approximately 0.005 (i.e. the lining is expected to fail in 5 out of 1,000 

barrels).   While, this level of failure probability can be considered as already high, the 

limiting value for the performance function is defined as 01.0)( =XPf  [19].  The 

results shown in Figure 9(b) indicate that the MV-based probability for  

is quite small (~0.0008), Point A in Figure 9(b). 

01.0)( ≥XPf

 To determine the most probable point corresponding to the 

, each design variable X01.0)()( == XPXZ f

iiii uX

i is first transformed into the 

corresponding standard normal variable ui using Equ. (5).  Since all the random 

variables, in the present case, are normal variables, Equ. (5) acquires a simple form: 

ui=(Xi-µi)/σi where µi and σi are the mean value and the standard deviation, 

respectively.  The Simplex method [20] is next used to find the MPP, u*, by solving the 

optimization problem: minimize |u| subject to ZMV(u*)=0.01.  The corresponding MPP 

in the X-space, X*, is then determined by the following inverse transformation: 

µσ += **  and the finite element analysis used to compute Z(X*)=Pf(X*) at the 

same level of the cumulative distribution function of 0.0008, Point B in Figure 9(b).   

This procedure yields Z(X*)=Pf(X*)=0.0266.  Since this value is considerable different 

from the MV-based value, Pf(X)=0.01, it appears that the performance function Z(X) is 

quite nonlinear and the use of the (linear)  Tailor series expansion around the MV point 

leads to substantial inaccuracies in evaluation of Z(X).  These inaccuracies are 

subsequently removed using the AMV+ procedure.  It should be also noted that to 

distinguish between the Z(X) values evaluated using the Tailor series expansion and the 

ones obtained using the finite element calculation, the former are denoted as solid 
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circles (e.g. Point A in Figure 9(a)) while the latter using solid squares (e.g. Point B in 

Figure 9(b)). 

 To improve the accuracy of evaluation of the performance function, the AMV+ 

method is employed.  Toward that end, all random variables are perturbed around the 

MPP point, ∂Z/∂Xi|X* derivatives evaluated using a finite difference method and the ZMPP 

function (solid line in Figure 9(b)) determined using Equ. (6).  It is seen that employing 

the AMV+ method increases the probability for  to ~0.0020, Point C in 

Figure 9(b) relative to its MV-based value (0.0008, Point A in Figure 9(b)).  Next, the 

MPP finding procedure is repeated while using the Z

01.0)( ≥XPf

MPP function as the constraining 

equation and the performance function recomputed (as Pf=0.164) at the updated MPP 

using the finite element method, Point D in Figure 9(b).    

To satisfied the imposed convergence condition (magnitude of the relative 

change in the finite-element based value for Z(X) between two adjacent iterations is less 

that 0.05), the AMV procedure had to be repeated two more times.  The results of the 

first of these iterations are displayed as Pints E and F in Figure 9(b).  The final solution 

in denoted by Point G in Figure 9(b) and shows that the probability for  

is approximately 0.0064.  

01.0)( ≥XPf

 To validate the AMV+ finding presented above, the Adaptive Importance 

Sampling (AIS) method discussed in Section II.1.2 is employed.  Toward that end, each 

standard-normal random variable ui is perturbed in both directions around the MPP 

corresponding to Point G in Figure 9(b), the first- and second-order finite difference 

methods used to determine the gradient vector, *)(ug s∇ , and the matrix of second-

order partial derivatives, D, and, in turn, Equ. (8) employed to construct the initial 

limit-state (sampling) function gs(u).  Next the sensitivities αi‘s at the MPP are 

computed as βα /*
ii u−=  where β=|u*| and used as elements of the last column 

(column 19) of the matrix H, Equ. (10).  The remaining elements of the matrix H are 

selected in such a way that the orthogonal character of the matrix is achieved.  Next, the 

matrix H is redefined as the upper left (18x18) minor matrix of the original matrix H 

and the matrix A computed using Equ. (14).  Eigenvalues λi (i=1,…,18) and the 
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corresponding eigenvectors of the matrix A are next determined  and used to compute  

the principal curvatures ki=2λi and, in turn,  to construct the matrix H1.  Lastly, Equ. 

(17) is employed to compute the mean curvature kM  and the values of β and kM  used to 

determine both the probability density function for random variables sampling from 

the failure-region, Equ. (21) and the corresponding failure probability, Equ. (20). 

Since the number of random variables in the present case is relatively large (n-

1=18), the chi-square density distribution function with n-1=18 degrees of freedom in 

Equs. (20) and (21) is simplified by replacing it with a normal distribution function with 

a mean equal to n-1=18 and a variance equal to 2(n-1)=36.   By numerically integrating 

Equ. (20) using the procedure outlined in Ref. [22], the probability for a randomly 

selected point to fall in the unsafe (failure)  region as defined by the initial limit-state 

function is found to be P0,1 = 0.0079. 

The AIS method is initiated by sampling Ns,1=10 points of the random variable s2 

in accordance with the probability density function given by Equ, (21) using the method 

of inversion of the (corresponding) cumulative distribution function, Equ. (22).  Each 

sampled s2 point and a randomly selected angle are then used to determine the 

corresponding 18 standard normal variables wi so that .  Also, the random 

variable v

2
18

1

2
ii

ws
=
Σ=

19 is selected from the standard normal distribution so that v 2
19 skM+≥ β  

which ensures that the sampled point is within the failure region as defined by the 

initial limit-state (sampling) function.  Each sampled design point defined by the 

random variables wi (i=1,..,18) and v19 is next first transformed to its corresponding 

point in the u-space using the matrices H1 and H, and subsequently to the corresponding 

point in the X-space.  The finite element method is then used to determine the sign of 

the limit-value function g(X)=Z(X)-0.01, i.e.  to find out whether the sampled point is in 

the failure region or in the safe region.   

Out of 10 points initially sampled, Nf,1=9 are found to fall within the failure 

region.  The probability for a randomly selected point to fall in the failure region is next 

updated as: 0071.010/9079.0/ 1,1,1,01, =⋅=⋅= sff NNPP . The R=NfI/N1I=0.9 ratio is 

next used to determine the total initial number of random points which need to be 
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sampled, Nst,1, in order to compute the failure probability within an error 10.0≤γ  and 

with a confidence level 1 90.0≥−α  as: ( ) ( ) ( )]2 30/2/1[1 1
1, =⋅−Φ⋅⋅−= −RRNst Rγα  

[21].   Next, additional Nst,1-Ns,t=20 points are sampled and the failure probability 

recomputed as: 00685,0/ ,1,1,0 11, =⋅ stft NNP

2, NNsa

=fP

1,st

 where Nf1 =26 is the total number of 

failure points.   

011,02,0 /)( PPP −=

2,stN2,022 /ftf NPP ⋅=

The sampling region is next increased by multiplying each (negative) principal 

curvature ki=2λi (i=1,…,18)  by a factor 1.1 and Equ. (20) is used to calculate the 

corresponding failure probability as P0,2=0.0085.   The number of additional points to 

be sampled from the region bounded by the original and the new sampling functions, 

Nsa,2, is then determined as: =7.  After additional seven 

points are sampled, the failure probability is updated as:  

 where N00689.0= st,2=Nst,1+Nsa,2=37 is the total number of sampled points and Nft,2=30 

the total number of failure points.  The sampling region had to be deformed one more 

time before convergence was achieved yielding Pf=0.00688.  Convergence is assumed to 

be achieved  when the magnitude of the relative change in the failure probability 

between two adjacent AIS iterations is less than 0.02.   

Finally, to remove a potential error associated with determination of the initial 

MPP, u*, the sampling region is increased by reducing β by 5% and the AIS procedure 

outlined above repeated until convergence of the failure probability is reached.  The 

final solution Pf=0.00689 is obtained which is in a good agreement with the value 0.0064 

obtained using the AMV+ method.   As expected, the AIS-based value is somewhat 

larger since the method is deliberately made more conservative in order to ensure that 

the AIS sampling region fully covers the failure region.  

IV. CONCLUSION 
Based on the results obtained in the present study the following main conclusions 

can be drawn: 

 1.  As a result of shrink fitting a gun-barrel steel jacket over the α-SiC lining, 

the lining develops a triaxial compressive stress state almost over its entire length.  
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However, due to slippage at the lining/jacket interface, a substantial reduction in the 

magnitude of the compressive axial stress takes place near the free end of the barrel. 

 2.  The observed reduction in the magnitude of the compressive axial stress in 

the lining enhance probability for lining failure by formation and growth of 

circumferential cracks near the barrel end during burst firing. 

 3.  The probability for failure by formation and growth of circumferential 

cracks at the lining/jacket interface can be estimated relatively accurately using either 

the approximate analytical (the Advanced Mean Value) or a direct sampling (the 

Adaptive Importance Sampling) method at a substantially savings of the computational 

effort relative to that needed in the conventional Monte Carlo method. 
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Table 1.  Required Number of Function Evaluations in the Mean Value (MV), the 
Advanced Mean Value (AMV) and the Advance Mean Value with Iterations (AMV+) 
Procedures for a System with n Random Design Variables 

Purpose  MV  AMV  AMV+ 

To Develop an MV-based 
Linearized Response Function, ZMV n+1 n+1 n+1 

To Compute the System Response at 
the MPP for a Selected Level of CDF  +1 +1 

To Develop an MPP-based 
Linearized Response Function, ZMPP   +n+1 

Total Number of  
Function Evaluations n+1 n+2 2n+3 
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Table 2. Thermal and Mechanical Properties of α-SiC and CrMoV Gun Barrel Steel 
and Process Parameters Used in the Present Finite Element Analysis 

Material 
α-SiC CrMoV Steel Property Symbol Unit 

Mean Std. Dev. Mean  Std. Dev.

Density ρ 3/ mkg  3,170.0 50.0 7,850.0 50.0 

Specific Heat cp KkgJ ⋅/ 890.0 55.0 463.0 21.0 

Thermal Conductivity k KmW ⋅/ 134.0 26.0 54.6 5.5 

Convective Heat 
Transfer Coefficient h KmW ⋅2/ 135.0 22.0 190.0 14.0 

Emissivity ε N/A 0.82 0.07 0.55 0.12 

Coefficient of Linear 
Thermal Expansion α K/10 6− 3.7 0.2 14.2 0.7 

Young's Modulus E GPa 415.0 25.0 210.0 2.5 

Poisson’s Ratio ν N/A 0.21 0.02 0.290 0.003 

Tensile Strength σf MPa 700.0 0.0* 1,070.0 70.0 

α-SiC/CrMoV Steel 
Friction Coefficient µ N/A 0.3 0.1 0.3 0.1 

Initial Temperature T0 K 298.0 0.0* 1,173.0 15.0 
 * Zero value of the standard deviation indicates that the parameter in question is not considered as a random 

variable. 
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Table 3. ZMV Coefficients ai in Equ. (3) and the Corresponding Sensitivities αi. 

Parameter Name Random 
Variable ai

* αi 
 at MV 

Density of α-SiC X1 0.00000 10-0 0.00000 10-0

Specific Heat of α-SiC X2 6.54545 10-8 -1.97563 10-3

Thermal Conductivity of α-SiC X3 1.99615 10-6 -2.84821 10-2

Heat Transfer Coefficient of α-SiC X4 -1.36364 10-7 1.64636 10-3

Emissivity of α-SiC X5 -1.42857 10-6 5.48787 10-5

Thermal Expansion Coefficient  
of  α-SiC X6 0.00000 10-0 0.00000 10-0

Young's Modulus of α-SiC X7 -3.52800 10-6 4.84030 10-2

Poisson’s Ratio of α-SiC X8 6.70000 10-4 -7.35375 10-3

α-SiC/CrMoV Steel  
Friction Coefficient X9 -1.54610 10-2 8.48480 10-1

Density of CrMoV Steel X10 2.40000 10-8 -6.58545 10-4

Specific Heat of CrMoV Steel X11 2.23810 10-7 -2.57930 10-3

Thermal Conductivity  
of CrMoV Steel X12 -6.72727 10-7 2.03051 10-3

Heat Transfer Coefficient  
of CrMoV Steel X13 -5.00000 10-7 3.84151 10-3

Emissivity of CrMoV Steel X14 -6.66667 10-6 4.39030 10-4

Thermal Expansion Coefficient  
of CrMoV Steel X15 -1.97857 10-4 7.60070 10-2

Young's Modulus of CrMoV Steel X16 -6.68000 10-6 9.16475 10-3

Poisson’s Ratio of CrMoV Steel X17 7.66667 10-4 -1.26221 10-3

Tensile Strength of CrMoV Steel X18 -1.39000 10-6 5.33970 10-2

Initial Temperature of CrMoV Steel X19 1.40000 10-7 -1.15245 10-3

* ao=.01587900
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FIGURE CAPTIONS 

Figure 1. A schematic of the Most Probable Point Locus (MPPL) in a two random-
variable space. 
Figure 2.  A schematic of the Adaptive Importance Sampling method in a two standard-
normal random-variable space. 
Figure 3.  A schematic of the hybrid ceramic/steel gun barrel. 
Figure 4.  Models for: (a) thermal and (b) mechanical analyses and (c) the finite element 
mesh used in the present work.  
Figure 5.  Temperature contour plots in the gun barrel at three different times during 
the shrink-fit process: (a) t =0.01 sec, (b) t =1 sec, and (c) t = 100 sec.   

Figure 6.  Distributions of: (a) the axial σzz; (b)  the radial σrr; and (c) the 
circumferential σθθ residual stresses in the barrel at the completion of the shrink-fit 
process.  

Figure 7.  Evolution of the residual axial stress, σrr, during the shrink-fit process.  The 
cooling times for (a)-(c) are identical to the ones in Figures 5(a)-(c).  

Figure 8.  Variation of the residual axial stress, σrr, within a layer of the α-SiC lining 
adjacent to the lining/jacket interface with a distance from the barrel end. 
Figure 9.  Cumulative Distribution Function (CFD) for the failure probability of the 
ceramic lining: (a) Linear scale; (b) Normal-distribution scale. 
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Figure 1. A schematic of the Most Probable Point Locus (MPPL) in a two random-
variable space.
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Figure 2.  A schematic of the Adaptive Importance Sampling method in a two standard-
normal random-variable space. 
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Figure 3.  A schematic of the hybrid ceramic/steel gun barrel. 
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Figure 4.  Models for: (a) thermal and (b) mechanical analyses and (c) the finite element 
mesh used in the present work. 
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Figure 5.  Temperature contour plots in the gun barrel at three different times during 
the shrink-fit process: (a) t =0.01 sec, (b) t =1 sec, and (c) t = 100 sec. 
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Figure 6.  Distributions of: (a) the axial σzz; (b)  the radial σrr; and (c) the 
circumferential σθθ residual stresses in the barrel at the completion of the shrink-fit 
process. 
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Figure 7.  Evolution of the residual axial stress, σzz, during the shrink-fit process.  The 
cooling times for (a)-(c) are identical to the ones in Figures 5(a)-(c). 
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Figure 8.  Variation of the residual axial stress, σrr, within a layer of the α-SiC lining 
adjacent to the lining/jacket interface with a distance from the barrel end. 
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Figure 9.  Cumulative Distribution Function (CFD) for the failure probability of the 
ceramic lining: (a) Linear scale; (b) Normal-distribution scale. 
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	For the given joint probability density function of the design variables,�, the probability of failure is defined as:
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